NEW ENGLAND ASSOCIATION OF MATHEMATICS LEAGUES

PLAYOFFS - 2023

Round 1: Arithmetic and Number Theory

1. \qquad
2. \qquad
3. $\$$ \qquad
4. The sum of $0 . \overline{12}$ and $0 . \overline{252}$ can be written as $\frac{a}{b}$, where a and b are relatively prime. Compute the sum $a+b$.
5. $\quad N$ divided by $4 / 7, N$ divided by $3 / 14$, and N divided by $5 / 21$ all produce integer quotients. Determine the smallest possible positive value of N.
6. Based on information from www.fueleconomy.gov, a certain plug-in hybrid uses 25 kwh of electricity to go 100 miles. The same car gets 25 mpg using regular fuel. Suppose electricity costs $\$ 0.14$ per kwh and gas costs $\$ 2.70$ per gallon. In driving 10,000 miles the hybrid is solely powered by gas for 1000 miles and solely powered by electricity for 9000 miles. Let N be the cost of using the hybrid on that trip. Let M be the cost of a 10,000 mile trip using a car solely powered by gas that gets 30 mpg . Compute $M-N$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Round 1: Arithmetic and Number Theory

1. Since $0 . \overline{12}$ repeats with a period of 2 and $0 . \overline{252}$ repeats with a period of 3 , their sum will repeat with a period of 6 . Thus, from $0.1212 \overline{12}+0.252 \overline{252}$, we obtain $0 . \overline{373464}$. Then from $N=0 . \overline{373464}$, we obtain $1,000,000 N=373464.373464$. Subtraction gives $999,999 N=373464$. Note that the sum of the digits of 373,464 is divisible by 9 , so divide both sides by 9 , obtaining $111,111 N=41,496$. Note that the sum of the digits of 41,496 is divisible by 3 , so divide both sides by 3 , obtaining $37,037 N=13,832$. The left side factors as $37 \cdot 1,001$ which equals $37 \cdot 7 \cdot 11 \cdot 13$. The right side factors as $8 \cdot 7 \cdot 13 \cdot 19$ which yields
$37 \cdot 11 \cdot N=8 \cdot 19 \rightarrow 407 N=152 \rightarrow N=\frac{152}{407}$. Thus, $\boldsymbol{a}+\boldsymbol{b}=\mathbf{5 5 9}$.
2. We want $\frac{7 N}{4}, \frac{14 N}{3}$, and $\frac{21 N}{5}$ to be integers. Think of N as $\frac{a}{b}$. Then we want the following to be integers: $\frac{7 a}{4 b}, \frac{14 a}{3 b}$, and $\frac{21 a}{5 b}$. Thus, a should be divisible by 3,4 , and 5 . The smallest value of a would therefore be the least common multiple of 3,4 , and 5 , namely, $60 . b$ must be the greatest common divisor of the 7,14 , and 21 , namely, 7 . If b were less than the GCD, the result would be larger, and if b were greater than the GCD, the result would not be an integer in all cases. Thus, $N=\frac{\mathbf{6 0}}{\mathbf{7}}$.
3. $M=\frac{10,000 \mathrm{miles}}{30 \mathrm{mpg}} \cdot \$ 2.70=\$ 900$
$N=\frac{25 \mathrm{kwh}}{100 \mathrm{miles}} \cdot(\$ 0.14$ per kwh $) \cdot 9000+\frac{1000}{25}(\$ 2.70)=\$ 315+\$ 108=\$ 423$
$\rightarrow M-N=477$.

NEW ENGLAND ASSOCIATION OF MATHEMATICS LEAGUES

PLAYOFFS - 2023

Round 2: Algebra 1

1.
2.
3. \qquad
4. Solve: $\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{3}}<\sqrt{27}$.
5. Compute the value of $x+y+z$, given the system

$$
\left\{\begin{array}{l}
x+y-z=-5 \\
x y=z \\
y-z=-9
\end{array}\right.
$$

3. Compute all values of k for which $x^{2}+3 x-k=0$ and $x^{2}-5 x-5 k=0$ have a common solution.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Round 2: Algebra 1

1. $\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{3}}<\sqrt{27} \rightarrow \frac{1}{\sqrt{x}}<\frac{1}{\sqrt{3}}+\sqrt{27} \rightarrow \frac{1}{\sqrt{x}}<\frac{1+\sqrt{81}}{\sqrt{3}} \rightarrow \frac{1}{\sqrt{x}}<\frac{10}{\sqrt{3}}$.

Then $\frac{\mathbf{1}}{\boldsymbol{x}}<\frac{\mathbf{1 0 0}}{3}$ gives $x>\frac{\mathbf{3}}{\mathbf{1 0 0}}$.

Alternate Solution: Multiply both sides by $\sqrt{3} \cdot \sqrt{x}$.
That gives $\sqrt{3}-\sqrt{x}<\sqrt{81 x} \rightarrow \sqrt{3}<10 \sqrt{x} \rightarrow \sqrt{x}>\frac{\sqrt{3}}{10} \rightarrow x>\frac{\mathbf{3}}{\mathbf{1 0 0}}$.
2. Given: $\left\{\begin{array}{l}x+y-z=-5 \\ x y=z \\ y-z=-9\end{array}\right.$

Substitute $y-z=-9$ into the first equation to obtain $x+(-9)=-5 \rightarrow x=4$. The second equation becomes $4 y=z$. Substitute into the $3^{\text {rd }}$ equation, obtaining $y-4 y=-9$, so $y=3$. The second equation then gives $4 \cdot 3=12=z$. Thus, $x+y+z=4+3+12=19$.
3. Their difference will have a solution in common so $\left(x^{2}+3 x-k\right)-\left(x^{2}-5 x-5 k\right)=0 \rightarrow$ $8 x+4 k=0 \rightarrow k=-2 x$. The first equation becomes $x^{2}+3 x-(-2 x)=0 \rightarrow x(x+5)=0 \rightarrow$ $x=0,-5$, confirmed by the second equation, which becomes
$x^{2}-5 x-5(-2 x)=0 \rightarrow x(x+5)=0 \rightarrow x=0,-5$.
Then $\left\{\begin{array}{l}k=-2 x \\ x=0,-5\end{array} \rightarrow k=\mathbf{0 , 1 0}\right.$.

Round 3: Geometry

1. \qquad
2. \qquad -
3. \qquad
4. In triangle $A B C, A B=A C=2$ and $B C=1$.
D and E are midpoints of $\overline{A C}$ and $\overline{A B}$, respectively, and
F lies in the interior of $\triangle A B C$ such that $D E=D F$ and $\angle E D F \cong \angle A$. Compute the area of $\triangle D E F$.

5. If $m \overparen{A B}=4(m \overparen{A E}), m \overparen{E D}=5(m \overparen{A E}), m \overparen{B D}=\frac{1}{2}(m \overparen{A B})$, and $\overline{T C}$ is tangent to the circle at B, what is $m \angle C$?
6. Let $A_{2} A_{4} A_{6} A_{8}$ be a square of side 1 , let P be the point where the diagonals of the square intersect, and let A_{1}, A_{3}, A_{5}, and A_{7} be the midpoints of $A_{2} A_{8}, A_{2} A_{4}, A_{4} A_{6}, A_{6} A_{8}$, respectively. From P, segments are drawn through each A_{i} to a point B_{i} such that $P A_{i} \cdot P B_{i}=1$.
Determine the exact area of the region bounded by $\overline{B_{1} B_{2}} \cup \overline{B_{2} B_{3}} \cup \overline{B_{3} B_{4}} \cup \overline{B_{4} B_{5}} \cup \overline{B_{5} B_{6}} \cup \overline{B_{6} B_{7}} \cup \overline{B_{7} B_{8}} \cup \overline{B_{8} B_{1}}$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Round 3: Geometry

1. $\overline{D E}$ is a midline, so $D E=\frac{1}{2}$. Since both $\triangle A B C$ and $\triangle D E F$ are isosceles triangles with $\angle A \cong \angle F D E, \triangle A B C: \triangle D E F \rightarrow$ the ratio of the area of $\triangle D E F$ to the area of $\triangle A B C$ is $\left(\frac{1 / 2}{2}\right)^{2}=\frac{1}{16}$. The height of $\triangle A B C$ is $\sqrt{4-(1 / 2)^{2}}=\frac{\sqrt{15}}{2}$, so the area 2 of $\triangle A B C$ is $\frac{1}{2} \cdot 1 \cdot \frac{\sqrt{15}}{2}=\frac{\sqrt{15}}{4}$. Thus, the area of $\triangle D E F$ is $\frac{\sqrt{15}}{4} \cdot \frac{1}{16}=\frac{\sqrt{15}}{64}$.
2. Let $m \Re E=x^{\circ}$. Then $m \Re B=4 x^{\circ}, m \ngtr E=5 x^{\circ}$, and $m B D=2 x^{\circ}$. Their sum is $12 x^{\circ}$, and from
$12 x=360^{\circ}$, we obtain $x=30^{\circ}$. From $m \ngtr E=30^{\circ}$ and $m B^{\circ} D=60^{\circ}$, we obtain $m \angle P=\frac{60^{\circ}-30^{\circ}}{2}=15^{\circ}$. Since $m \angle T B P=\frac{1}{2}(m \overparen{A B})$, we have $m \angle T B P=60^{\circ}$. Then
$m \angle P+m \angle C=60^{\circ} \rightarrow 15^{\circ}+m \angle C=60^{\circ} \rightarrow m \angle C=45$

3. $P A_{1}=P A_{3}=\frac{1}{2} \rightarrow P B_{1}=P B_{3}=2$,
making $\triangle P B_{1} B_{3}$ an isosceles right triangle (i.e., a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle) with legs of length of 2 , and hypotenuse $\overline{B_{1} B_{3}}$ of length $2 \sqrt{2}$. Draw $\mathcal{M A}_{2}$ intersecting $\overline{B_{1} B_{3}}$ at B_{2}. Marked angles have the indicated angle measures $\rightarrow \angle P B_{2} B_{1}$ is a right angle; hence, $B_{1} B_{2}=\sqrt{2}$. Using a similar argument,
$B_{2} B_{3}=B_{3} B_{4}=\ldots=B_{7} B_{8}=B_{8} B_{1}=\sqrt{2}$
\rightarrow the boundary of the region
B_{6}

$B_{1} B_{3} B_{5} B_{7}$ is a square of side-length
$2 \sqrt{2}$. Thus, the area is 8 .

NEW ENGLAND ASSOCIATION OF MATHEMATICS LEAGUES

PLAYOFFS - 2023

Round 4: Algebra 2

1. \qquad
2. \qquad
3. \qquad
4. Compute the value of x satisfying $2^{\log _{x} 9}=\frac{1}{4}$.
5. Given: $f(x)=(3+2 x)(1-4 x)$

Compute the minimum positive integer value of c for which the maximum value of the function $g(x)=f\left(\frac{x+1}{2}\right)-c$ is negative.
3. As he wrote his last contest, Don Barry was reflecting on the 37 years that he'd written problems for MAML and NEAML. The phrase ITHASBEENAPLEASURE came to mind. He then wondered what the probability would be that the phrase HASBEEN would appear somewhere in the string, if the letters were arranged at random. Compute the answer to his question.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Round 4: Algebra 2

1. $\log _{x} 9=-2 \rightarrow 9=x^{-2} \rightarrow \frac{1}{x^{2}}=9 \rightarrow x^{2}=\frac{1}{9}$. Thus, $x=\frac{\mathbf{1}}{\mathbf{3}}$.
2. $g(x)=(3+x+1)(1-(2 x+2))-c=(x+4)(-2 x-1)-c=-2 x^{2}-9 x-4-c$

Completing the square, we have

$$
g(x)=-2\left(x^{2}+\frac{9}{2} x+\frac{81}{16}\right)-4-c+\frac{81}{8}=-2\left(x+\frac{9}{4}\right)^{2}+\frac{-32-8 c+81}{8}=-2\left(x+\frac{9}{4}\right)^{2}+\frac{49-8 c}{8}<0 .
$$

Thus, the maximum is $\frac{49-8 c}{8}$ (and it occurs for $x=-\frac{9}{4}$) $\rightarrow c_{\min }=7$.
3. There are four E's, three A's, two S's, and one each of B, H, I, L, N, P, R, T, and U; 18 letters in all. To find the total number of ways to arrange the 18 letters, we take the number of permutations of an 18 -set (18 !), then divide by the number of repeated arrangements, which are the number of ways to permute the letters E, A, and S in their respective groups (this will equal $(4!)(3!)(2!))$. Therefore, the total number of arrangements is $\frac{18!}{4!\cdot 3!\cdot 2!}$

Now we find the number of arrangements which have the phrase HASBEEN. To do this, we treat "HASBEEN" as a single character, with the other 11 characters being the 11 remaining letters (two E's, two A's, and one each of I, L, P, R, S, T, and U). The total number of ways to arrange these 12 characters is $\frac{12!}{2!\cdot 2!}$, taking into account the double-counts that happen with the A's and E's.

We now can solve for our probability, which will be the number of arrangements that have the phrase HASBEEN, divided by the total number of arrangements:
$\frac{\frac{12!}{2!\cdot 2!}}{\frac{18!}{4!\cdot 3!\cdot 2!}}=\frac{12!\cdot 4!3!\cdot 2!}{18!\cdot 2!\cdot 2!}=\frac{\mathbf{1}}{\mathbf{1 8 5 , 6 4 0}}$

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Round 4: Algebra 2 - continued

3. Alternate Solution:

Consider all 18 letters to be distinguishable - ITHA $_{1} \mathrm{~S}_{1} \mathrm{BE}_{1} \mathrm{E}_{2} \mathrm{NA}_{2} \mathrm{PLE}_{3} \mathrm{~A}_{3} \mathrm{~S}_{2} \mathrm{URE}_{4}$.
There are 18 ! different 18 -letter permutations. There are 3 ways to select one $A\left(A_{1}, A_{2}, A_{3}\right)$.
There are 2 ways to select one $S\left(S_{1}, S_{2}\right)$.
There are $4 \cdot 3=12$ ways to permute two E's from a group of four, namely,
$\mathrm{E}_{1} \mathrm{E}_{2}, \mathrm{E}_{1} \mathrm{E}_{3}, \mathrm{E}_{1} \mathrm{E}_{4}, \mathrm{E}_{2} \mathrm{E}_{1}, \mathrm{E}_{2} \mathrm{E}_{3}, \mathrm{E}_{2} \mathrm{E}_{4}, \ldots, \mathrm{E}_{4} \mathrm{E}_{3}$.
There are 7 letters in the string HASBEEN, so there are 11 distinguishable letters left over, and those can be arranged in 11! ways. Finally, the string HASBEEN can be placed before these 11 letters, after the 11 letters, or in any one of the 10 places between them, for a total of 12 positions.
For example,
HASBEEN \qquad
--_-_-_-__HASBEEN
_HASBEEN \qquad
-_-_-_-_-_-_HASBEEN_

The probability that HASBEEN occurs is, therefore,

$$
\frac{\left(\begin{array}{c:ccc}
H & A & S & B \\
1 & E & N \\
1 \cdot 3 \cdot 2 \cdot 1 \cdot 12 \cdot 1 \cdot 11!
\end{array}\right) \cdot 12}{18!}=\frac{3 \cdot 2 \cdot 12^{3}}{18 \cdot 17 \cdot 16^{4} \cdot 15 \cdot 14 \cdot 13}=\frac{1}{17 \cdot 4 \cdot 15 \cdot 14 \cdot 13}=\frac{\mathbf{1}}{\mathbf{1 8 5 , 6 4 0}} .
$$

NEW ENGLAND ASSOCIATION OF MATHEMATICS LEAGUES
 PLAYOFFS - 2023

Round 5: Analytic Geometry

\qquad
2. \qquad
3. \qquad

1. A line passing through the origin passes below $A(1,4)$ and above $B(7,2)$. If the vertical distance of the line below A is the same as the vertical distance above B, what is the slope of the line?
2. Let $f(x)=m x+k$, where both m and k are positive integers. If f and $f^{-\mathbf{l}}$ intersect at a point where $\boldsymbol{x}=-5$, what is the largest possible value of k such that m is less than 100 ?
3. Given: $f(x)=-(x+1)(x-5)$
A and B are the points where the graph of $y=f(x)$ intersects the x-axis.
P lies on the graph of $y=f(x)$, where $f(x)>0$.
$\triangle A P B$ is a right triangle.
Determine all possible x-coordinates of P.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Round 5: Analytic Geometry

1. If m is the slope of the line through the origin, then

$$
7 m-2=4-m \rightarrow 8 m=6 \rightarrow m=\frac{\mathbf{3}}{\mathbf{4}} .
$$

Alternate Solution

Let C be on the line a distance of t below A, and let D be on the line a distance of t above B.
Then $C=(1,4-t)$ and $D=(7,2+t)$. The slope of $\overline{C D}=m=\frac{(2+t)-(4-t)}{6}=\frac{t-1}{3}$.
But, using $\triangle O C E, m=\frac{4-t}{1}$. Equating, $4-t=\frac{t-1}{3} \rightarrow t=\frac{13}{4} \rightarrow m=4-\frac{13}{4}=\frac{\mathbf{3}}{\mathbf{4}}$.
2. f and f^{-1} intersect on the line $y=\boldsymbol{x}$; thus, the point of intersection is $(-5,-5)$. Substituting gives $-5=m(-5)+k \rightarrow m=\frac{k+5}{5}$. Then $\frac{k}{5}+1<100 \rightarrow k<495$. Since m is an integer, k must be divisible by 5 ; so, $k=490$.
3. Let $P=(a,-(a+1)(a-5)), A=(-1,0)$, and $B=(5,0)$.

The slope of $A P=\frac{-(a+1)(a-5)-0}{a-(-1)}=5-a$. The slope of $P B=\frac{-(a+1)(a-5)-0}{a-5}=-(a+1)$.
Then $-(a+1)(5-a)=-1 \rightarrow a^{2}-4 a-4=0$.
Thus, $a=\frac{4 \pm \sqrt{4^{2}-4(1)(-4)}}{2}=\frac{4 \pm \sqrt{32}}{2}=2 \pm 2 \sqrt{2}$.

NEW ENGLAND ASSOCIATION OF MATHEMATICS LEAGUES
 PLAYOFFS - 2023

Round 6: Trig and Complex Numbers

1. \qquad \circ
2. \qquad
3. \qquad
4. For $0^{\circ}<\theta<32^{\circ}$, if $\cos \theta=\cos (11 \theta)$, what is the value of θ ?
5. Solve $\cos (2 x)-\tan (x)=1$ for $0 \leq x<2 \pi$.
6. Let $A=\frac{\mathbf{1}}{2}\left(\cos 50^{\circ}+i \sin 50^{\circ}\right)$ and $B=2\left(\cos 18^{\circ}+i \sin 18^{\circ}\right)$. Compute the area of the triangle in the complex plane whose vertices are the origin, A^{3}, and B^{5}.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Round 6: Trig and Complex Numbers

1. Note that $32 \cdot 11=352$, so the angle whose measure is $\mathbf{1 1 \theta}$ lies in the $4^{\text {th }}$ quadrant. Since the cosines are equal, $\theta+11 \theta=360^{\circ} \rightarrow 12 \theta=360^{\circ} \rightarrow \theta=\mathbf{3 0}$.
2. $\quad \cos (2 x)-\tan (x)=1 \rightarrow 1-2 \sin ^{2} x-\tan x=1 \rightarrow 2 \sin ^{2} x+\frac{\sin x}{\cos x}=0 \rightarrow \sin x(2 \sin x \cos x+1)=0$ for $\cos x \neq 0$, i.e., for $x \neq \frac{\pi}{2}$ or $\frac{3 \pi}{2}$. Then either $\sin x=0$ or $\sin (2 x)=-1$.
The former yields $x=0$ or π; the latter yields $2 x=\frac{3 \pi}{2}+2 \pi k \rightarrow x=\frac{3 \pi}{4}+\pi k \rightarrow x=0, \frac{3 \pi}{4}, \pi, \frac{7 \pi}{4}$.
3. $A^{3}=\frac{1}{8}\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)$ while $B^{5}=32\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$. Thus, we have a triangle with adjacent sides of $\frac{\mathbf{1}}{\mathbf{8}}$ and 32 enclosing an angle of $150^{\circ}-90^{\circ}=60^{\circ}$.
Its area is $\frac{1}{2} \cdot \frac{1}{8} \cdot 32 \sin 60=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3}$.

NEW ENGLAND ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2023

Team Round - Place all answers on the team answer sheet.

1. Let M_{0} be a "4-digit" positive integer, from 0001 to 9999 , inclusive.

Create a new "4-digit" positive integer $M_{1}=\underline{A} \underline{B} \underline{C} \underline{D}$, where
A denotes the number of odd digits in each "4-digit" positive integer.
B denotes the number of even digits in each "4-digit" positive integer.
$C=|A-B|$
$D=A \cdot B$.
An infinite sequence of integers $M_{0}, M_{1}, M_{2}, M_{3}, \ldots$ is created using this procedure.
Compute the sum of all distinct possible values of M_{2023}.
2. Consider the following three listings of the integers n from 1 to 25 , inclusive, where duplications are allowed:
D_{1} : each value of n occurs n times
D_{2} : each value of n occurs 2^{n-1} times
D_{3} : each value of n occurs $n-\phi(n)$ times, where $\phi(n)$ denotes the number of integers between 1 and n, inclusive, that are relatively prime to n.
m_{1}, m_{2}, and m_{3} are the mean, median, and mode, respectively, of D_{1}, D_{2}, and D_{3}.
Compute the ordered triple $\left(m_{1}, m_{2}, m_{3}\right)$.
3. The number of square units in the lateral surface area of a right circular cone whose radius is r and whose height is h is equal to the number of cubic inches in its volume. Compute the smallest integer value of h^{2} that makes r an integer.
4. Marty Badoian designed a format for a math competition. Each team of 10 had to consist of 2 freshmen (A,B), 2 sophomores (C,D), 3 juniors (E,F,G), and 3 seniors (H,I,J). The contest had 3 rounds: geometry, algebra, and trig. Each team had to enter a group of 4 students in each round, each group of 4 had to have one member from each class, and no member could appear in more than 2 rounds. How many different team rosters could a school submit for this three-round contest?

	1	2	3
A			
B			
C			
D			
E			
F			
G			
H			
I			
J			

5. Compute the minimum distance between the graphs of $y=-x^{2}+4 x-3$ and $4 x+2 y-17=0$.
6. Given: $\theta=\operatorname{Tan}^{-1}((4 x-1)(3 x+2))$

Determine all values of x for which $0<2 \theta<\frac{\pi}{2}$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Team Round

1. i) If M_{0} has 3 odd digits and 1 even digit as in OOOE, $M_{1}=3123$ $\rightarrow M_{2}=3123 \rightarrow M_{2023}=3123$.
ii) If M_{0} has 3 even digits and 1 odd digit as in EEEO, $M_{1}=1323$
$\rightarrow M_{2}=3123 \rightarrow M_{2023}=3123$.
iii) If M_{0} has 2 odd and 2 even digits as in OOEE, $M_{1}=2204$, a number with 4 even digits $\rightarrow M_{2}=0440 \rightarrow M_{2023}=0440=440$.
iv) If M_{0} has 4 even digits, $M_{2023}=440$.
v) If M_{0} has 4 odd digits, then $M_{1}=4040$, a number with 4 even digits $\rightarrow M_{2023}=440$.

Thus, the required sum is $3123+440=\mathbf{3 5 6 3}$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Team Round - continued

2. $\quad D_{1}$ contains one 1 , two 2 s , three 3 s , etc.

This listing contains $1+2+3+\ldots+25=\frac{25 \cdot 26}{2}$ integers.
The sum of the terms is $1+2^{2}+3^{2}+4^{2}+\ldots+25^{2}$.
Using the summation formula $1+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$, we have $\frac{25 \cdot 26 \cdot 51}{6}$.
Without calculating either of these quotients, $m_{1}=\frac{\frac{25 \cdot 26 \cdot 51}{\not x^{3}}}{\frac{25 \cdot 26}{X}}=17$.
D_{2} contains one 1 , two 2 s , four 3 s , eight 4 s , etc. 25 occurs 2^{24} times.
Before the first 25 , there are $2^{0}+2^{1}+2^{3}+2^{4}+\ldots+2^{23}=1\left(\frac{2^{24}-1}{2-1}\right)=2^{24}-1$ integers.
Thus, the number of 25 s is one more than the number of smaller numbers in this listing. So , if the numbers are arranged in nondecreasing order, we have

D_{3} : Since n and $\phi(n)$ are not independent, we are looking for a large value of n that has a relatively small $\phi(n)$ value. Suppose the prime factorization of n is $p_{1}{ }^{e_{1}} \cdot p_{2}{ }^{e_{2}} \cdot \ldots \cdot p_{k}{ }^{e_{k}}$.
$\phi(n)$ can be calculated by simply making a list or by invoking the following formula:
$\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{p_{k}}\right)$. Clearly, $\phi(25)$ is relatively large, since most integers between 1 and 25 , inclusive, are not divisible by 5 ; in fact, $\phi(25)=20 \rightarrow 25$ occurs only 5 times.
For $n=24$, only $1,5,7,11,13,17,19,23$ are relatively prime to $24 \Rightarrow \phi(24)=8$; alternatively,
$24=2^{3} \cdot 3^{1} \Rightarrow \phi(24)=24 \cdot \frac{1}{2} \cdot \frac{2}{3}=8 . \quad 24-\phi(24)=16 \rightarrow m_{3}=24 \rightarrow\left(m_{1}, m_{2}, m_{3}\right)=(\mathbf{1 7 , 2 5 , 2 4})$.
The following chart confirms that 16 is the largest frequency and that the mode is 24.

n	$\phi(n)$	Freq												
1	1	0	6	2	4	11	10	1	16	8	8	21	12	9
2	1	1	7	6	1	12	4	8	17	16	1	22	10	12
3	2	1	8	4	4	13	12	1	18	6	12	23	22	1
4	2	2	9	6	3	14	6	8	19	18	1	24	8	16
5	4	1	10	4	6	15	8	7	20	8	12	25	20	5

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Team Round - continued

3. Let $\boldsymbol{\ell}$ be the slant height. From $\pi r \ell=\frac{1}{3} \pi r^{2} h$ we obtain $3 \ell=r h \rightarrow 3 \sqrt{r^{2}+h^{2}}=r h$. Squaring gives $9 r^{2}+9 h^{2}=r^{2} h^{2} \rightarrow r^{2}=\frac{9 h^{2}}{h^{2}-9}$. To find integer values of h^{2} that make r an integer, let $t=h^{2}-9$, making $9 h^{2}=9(t+9)$. Then $r^{2}=\frac{9(t+9)}{t}=9+\frac{81}{t}$. Clearly, t must be a factor of 81. If $t=1$, then $r^{2}=90$, but if $t=3$, then $r^{2}=36 \rightarrow r=6$ and that will give the least integer value of h^{2} that makes r an integer. Thus, $3=h^{2}-9$, so $h^{2}=12$.
4. Under the given conditions (4 mathletes in each round, a mathlete from each class in each round, no mathlete competing in more than 2 rounds), how many rosters like the following are possible?

		Round 1	Round 2	Round 3
freshmen	A			X
	B	X	X	
sophomores	C		X	
	D	X		X
juniors	E		X	X
	F	X		X
	G	X	X	
seniors	H		X	X
	I	X		X
	Round 1: ACEH 2: ADFI			
Round 3: BCGJ				
	J	X	X	

Analysis \#1

Over the three rounds the freshmen will have permutations of AAB or BBA, a total of 6 possibilities. The sophomores will also have 6 possible choices for the group. The juniors could have permutations of EEF, FFE, EEG, GGE, FFG, and GGF. Each of these groups can be arranged in 3 ways, making for a total of 18 different choices. But the juniors could also have permutations of EFG, adding another 6 choices for a total of 24 . The same is true of the seniors. So the coach can enter $6 \cdot 6 \cdot 24 \cdot 24=20,736$ possible rosters.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Team Round - continued

4. Analysis \#2

Start with the possibilities for placing the two freshmen. There are three rounds, and neither student can participate all three times. Without the last restriction, there would be $2^{3}=8$ possibilities for placing the freshman (choose one of the two students for each round), but there are two possibilities that must now be ruled out (those which place the same freshman in all three rounds), so there are 6 total ways to place the freshman. Likewise, there are 6 ways to place the sophomores.

For the case of the juniors, there are three students. Without the restriction on how many rounds an individual can be in, there would be $3^{3}=27$ different ways to place the juniors (choose one of three students for each round), but there are now three possibilities which must be ruled out (those which place the same junior in each round) so there are 24 ways to place the juniors. Likewise, there are 24 ways to place the seniors.

Since the freshmen roster decisions, for example, are independent of the junior roster decisions, for example, there are $6 \times 6 \times 24 \times 24=\mathbf{2 0 , 7 3 6}$ possible rosters.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

NEW ENGLAND PLAYOFFS - 2023 - SOLUTIONS

Team Round - continued

5. Let $A\left(a,-a^{2}+4 a-3\right)$ be a point on the parabola. Then the distance to the line is given by $\frac{\left|4 a+2\left(-a^{2}+4 a-3\right)-17\right|}{\sqrt{4^{2}+2^{2}}}$. This simplifies to $\frac{\left|-2 a^{2}+12 a-23\right|}{2 \sqrt{5}}=\frac{\left|-2\left(a^{2}-6 a\right)-23\right|}{2 \sqrt{5}}=$ $\frac{\left|-2\left(a^{2}-6 a+9\right)-23+18\right|}{2 \sqrt{5}}=\frac{\left|-2(a-3)^{2}-5\right|}{2 \sqrt{5}}$. If $a=3$, the expression takes on its minimum value of $\frac{5}{2 \sqrt{5}}=\frac{\sqrt{5}}{2}$.

Alternate solution: Find the equation of the line parallel to the given line that is tangent to the parabola. Then find the distance from that line to the given line:
Based on $y=-2 x+\frac{17}{2}$, we use the equation $y=-2 x+k$. From $-x^{2}+4 x-3=-2 x+k$ we obtain $0=x^{2}-6 x+(k+3)$. This takes on its minimum value if $k+3=9 \rightarrow k=6$. From the graph of $y=-2 x+6$, we choose the point $(0,6)$ and find its distance to
 $4 x+2 y-17=0$.
6. $0<2 \theta<\frac{\pi}{2} \rightarrow, 0<\theta<\frac{\pi}{4} \rightarrow 0<\tan \theta<1$
$\rightarrow(4 x-1)(3 x+2)>0 \rightarrow x>\frac{1}{4}$ or $x<-\frac{2}{3}$;
$(4 x-1)(3 x+2)<1 \rightarrow 12 x^{2}+5 x-3<0 \rightarrow(4 x+3)(3 x-1)<0 \rightarrow-\frac{3}{4}<x<\frac{1}{3}$, and
Taking the intersection of these intervals,

we have the x-values that satisfy both conditions, namely, $-\frac{3}{4}<x<-\frac{2}{3}$ or $\frac{1}{4}<x<\frac{1}{3}$.

NEW ENGLAND ASSOCIATION OF MATHEMATICS LEAGUES

 PLAYOFFS - 2023
Answer Sheet

Round 1

1. 559
2. $\frac{60}{7}$
3. 477

Round 2

1. $x>\frac{3}{100}$
2. 19
3. $k=0,10$

Round 5

1. $\frac{3}{4}$
2. 490
3. $2 \pm 2 \sqrt{2}$

Round 6

1. 30
2. $0, \frac{3 \pi}{4}, \pi, \frac{7 \pi}{4}$
3. $\sqrt{3}$

Team

1. 3563
2. $(17,25,24)$
3. 12
4. 20,736
5. $\frac{\sqrt{5}}{2}$
6. $-\frac{3}{4}<x<-\frac{2}{3}$ or $\frac{1}{4}<x<\frac{1}{3}$

NEAML PLAYOFFS - 2023
TEAM ROUND - ANSWER SHEET

Team Name:

\qquad
Place answers on reverse side in the spaces provided!

NEAML PLAYOFFS - 2023

TEAM ROUND - ANSWER SHEET

Team Name: \qquad
Place answers on reverse side in the spaces provided!

Team Round Answers:

1.
2.
3. \qquad
4. \qquad
5. \qquad
6.

Team Round Answers:

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
